
High
 La

nd
er

Write
rs

1

Project 1 Assignment - Sorting

High
 La

nd
er

Write
rs

2

1.​ Modified bubble sort function

def modified_bubble_sort(arr):

 n = len(arr)

 for i in range(n):

 swapped = False

 for j in range(0, n-i-1):

 if arr[j] > arr[j+1]:

 arr[j], arr[j+1] = arr[j+1], arr[j]

 swapped = True

 if not swapped:

 break

 return arr

testing in random order

import random

test_list = random.sample(range(1, 21), 20)

print("Original list:", test_list)

sorted_list = modified_bubble_sort(test_list.copy())

print("Sorted list:", sorted_list)

2.​ In essence, the number of data exchanges in both the selection sort and bubble sort

analysis reflects the number of times that elements are swapped to possess this final

sorted order. The number of exchanges in the worst case is O(n^2), which is proportional

to the quadratic of the number of elements, in both algorithms. Where the size of the data

High
 La

nd
er

Write
rs

3

objects does not pay any significant role in the analysis, rather the time complexity is

dominated by the order of magnitude of the number of elements being sorted.

3.​ The optimized bubble sort still exhibits the O(n^2) behavior on average because while the

best case performance is improved to linear when the list already lies sorted, the average

case still passes through a quadratic number of comparisons and swaps. The optimization

only eliminates needless passes when the list already lies sorted.

4.​ Insertion sort in partially sorted lists works well owing to being effective at handling

easily the situation where only a few elements are out of place. It performs well for the

input data that is already partially sorted with a few comparisons and swaps to insert each

element in its correct position. This makes it more efficient than bubble sort or selection

sort algorithms in situations, which data is almost sorted.

5.​ Modified of the selectionSort function

def selectionSort(arr, reverse=False):

 n = len(arr)

 for i in range(n-1):

 min_index = i

 for j in range(i+1, n):

 if reverse:

 if arr[j] > arr[min_index]:

 min_index = j

 else:

High
 La

nd
er

Write
rs

4

 if arr[j] < arr[min_index]:

 min_index = j

 arr[i], arr[min_index] = arr[min_index], arr[i]

 return arr

Example usage:

arr = [64, 25, 12, 22, 11]

sorted_arr = selectionSort(arr, reverse=True)

print("Sorted array in descending order:", sorted_arr)

