Neural Networks and Deep Learning Assignment

Student Name

Institution Affiliation

Course

Tutor Name

Date

Neural Networks and Deep Learning Assignment

Probability p as a function of x:

Any real-valued input n be mapped to the range of 0 to 1 by the logistic function. The probability p that the output f(x) is 1 (i.e., the positive class) for an input vector (x) and weight vector (w) is as follows: $[p = \frac{1}{1}{1 + e^{-z}}]$ where the linear combination of weights and features is represented by $(z = w^T x)$.

Derivative of log p with respect to each weight (w_i):

The derivative of (\log p) for each weight (w_i) is going to be computed as follows: [\frac {\partial } {\partial w_i} \left(\log \frac {1} {1 + e^{-z}} \right) = \frac {\partial} {\partial w_i}]

The chain rule gives us: $[\frac{p}{\log p} {\frac{\log u_i} = \frac{1}{p} \frac{1}$

Derivative of log(1-p) with respect to each weight (w_i):

we are going to determine the derivative of $(\log(1-p))$ for every weight (w_i): [\frac{\partial} {\partial w_i} \left(\log \frac{e^{-z}}{1 + e^{-z}}\right) \frac{\partial \log(1-p)} {\partial w_i}]

Again using the chain rule: $[\frac{1}{1-p}] = \frac{1}{1-p} p(1-p) x_i = -p x_i$

Learning rule for minimizing negative-log-likelihood loss:

It is as follows: $[L(w) = -\sum_{i=1}^{N} \sum_{i=1}^{N} \sum$

The loss gradient with relation to weights (w_i) is going to be expressed as: [\frac {\partial L} {\partial w_i} = -(y_i - p_i) x_i]

For updating weights, the learning rule (gradient descent) is as follows: [w_i \leftarrow w_i + \alpha ($y_i - p_i$) x_i] When learning rate (\alpha) is expressed.

Resemblance to other learning rules:

The gradient descent update utilized in other machine learning methods, such as neural

networks and linear regression, is similar to the learning rule for reducing

negative-log-likelihood loss.

It seeks to modify weights according to the discrepancy between true labels and expected probability.

The model is encouraged to improve its predictions by the negative-log-likelihood loss, which reduces the difference between expected and actual outcomes.